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Abstract

The effect of a temporally incoherent magnetic field (‘noise’) on microwave-induced spatial learning deficit in the rat was investigated.
Rats were trained in six sessions to locate a submerged platform in a circular water maze. Four treatment groups of rats were studied:
microwave-exposure (2450-MHz continuous-wave microwaves, power density 2 mW/cm?, average whole-body specific absorption rate 1.2
W/kg), ‘noise’ exposure (60 mG), ‘microwave+noise’ exposure, and sham exposure. Animals were exposed to these conditions for | h
immediately before each training session. One hour after the last training session, animals were tested in a 2-min probe trial in the maze
during which the platform was removed. The time spent during the 2 min in the quadrant of the maze in which the platform had been
located was scored. Results show that microwave-exposed rats had significant deficit in learning to locate the submerged platform when
compared with the performance of the sham-exposed animals. Exposure to ‘noise’ alone did not significantly affect the performance of the
animals (i.e., it was similar to that of the sham-exposed rats). However, simultaneous exposure to ‘noise’ significantly attenuated the
microwave-induced spatial learning deficit (i.e. ‘microwayve+noise’-exposed rats leamned significantly better than the microwave-exposed
rats). During the probe trial, microwave-exposed animals spent significantly less time in the quadrant where the platform was located.
However, response of the ‘microwave+noise’-exposed animals was similar to that of the sham-exposed animals during the probe trial.
Thus, simultaneous exposure to a temporally incoherent magnetic field blocks microwave-induced spatial learning and memory deficits in
the rat.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Cellular phones and wireless communication devices
emit microwaves, a form of electromagnetic field (EMF).
Due to the close proximity to the body, users are exposed
to relatively high level of the radiation. The specific
absorption rate (SAR) in certain areas of the head of a user
could reach a level up to 2.5 W/kg [1]. In previous studies,
we found that central cholinergic activities, particular those
in the frontal cortex and hippocampus, are affected in rats
exposed to microwaves at a whole-body average SAR of
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0.6 W/kg [2-5], and exposure to microwaves affected both
short-term [6] and long-term [7] spatial leaming and
memory in the rat. We found that rats, after exposure to
microwaves, had significant deficit performing in the
Morris water maze, in which they had to learn to locate
a submerged platform in a circular pool of opaque water
using cues in the environment. This behavioral paradigm
has been widely used to study spatial ‘reference’ memory
of rodents. Relevance of spatial learning and memory of
rodents to human health has been suggested [8,9], e.g.,
relating to aging, cognition, and development of neuro-
degenerative diseases.

Litovitz and his colleagues have proposed that cell
membrane could detect EMFs in the environment. How-
ever, for a response to occur, an EMF has to be ‘coherent’,
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that is, its characteristic parameters, such as frequency,
amplitude, waveform, and pattern have to remain constant
over a certain period of time (>~10 s). Incoherent EMFs
(i.e. those with changes in characteristic parameters over
shorter periods of time) may be detected but do not trigger
a biological response. Furthermore, superimposition of an
incoherent EMF over a coherent EMF can make the sum
field incoherent, thus blocking the biclogical effect of the
coherent field. For details and theory of this EMF-detection
model, readers are referred to the publications of Litovitz
et al. [10,11]. Specifically, they have reported that a
superimposed incoherent EMF (‘noise’) could inhibit the
abnormalities in developing chick embryos [12] and
changes in ornithine decarboxylase (ODC) activity [l1,
13,14] induced by a coherent 60-Hz magnetic field. They
also found that a ‘noise’ superimposed on a microwave
field blocked the microwave-induced increase in ODC
activity in cultured cells [15]. Their hypothesis was further
supported by results of the experiments of Raskmark and
Kwee [16] showing that an incoherent magnetic field could
mitigate the effect of a coherent 50-Hz magnetic field on
proliferation of human epithelial amnionc cells, and of Lin
and Goodman [17] that a superimposed incoherent mag-
netic field blocked the enhancement effect of a 60-Hz
magnetic field on c-myc transcript levels in human leukemia
cells.

In the present experiment, we investigated whether
simultaneous exposure to a temporally incoherent magnetic
field could attenuate the microwave-induced performance
deficit in the water maze in the rat.

2. Methods and procedures
2.1. Animals

Male Sprague—Dawley rats (2-3 months old, 250-300 g)
were purchased from B & K Laboratory, Bellevue, WA.
They were housed in the same room in which they were
exposed to EMF and adjacent to the room in which the
water-maze testing was carried out. The area of housing was
approximately 6 ft away from the Helmholtz coils used to
generate the magnetic ‘noise’. No significant change in
magnetic field intensity was detected at this location when
the coils were activated to generate a field of 60 mG. In
addition, housing cages were covered by a Styrofoam cover,
which muffled most of the sound in the laboratory.

The rooms were maintained on a 12-h light-dark
cycle (light on between 7 am. and 7 p.m.) and at an
ambient temperature of 22 °C. Animals were provided
with Purina rat chow and water ad libitum during the
experiment. A maximum of three rats were housed in
one cage during an experiment. Animal use procedures
of this research were approved by the Institutional
Animal Care and Use Committee of the University of
Washington.

2.2. Methods of microwave and incoherent magnetic field
exposure

Rats were exposed to microwaves in a cylindrical
waveguide exposure system designed by Guy et al. [18].
Briefly, the system consists of individual cylindrical wave-
guides connected through a power divider network to a
continuous-wave microwave-power source (Hewlett Pack-
ard, HP-8616A signal generator). Waveguides were con-
structed of galvanized wire screen in which a circularly
polarized TE,;-mode field configuration is exited. The tube
contains a cylindrical plastic chamber (length 19.6 cm,
diameter 17.6 cm, and a built-in floor with width 14.5 c¢m)
to house a rat with enough space for it to move freely inside.
The floor of the chamber is formed of glass rods, allowing
waste to fall through plastic funnels into a collection
container outside the waveguide.

For incoherent magnetic field exposure, a waveguide
was placed between a set of Helmholtz coils, which were
positioned across the area where the plastic animal-
holding cage was located. Thus, an animal could be
exposed simultaneously to microwaves and ‘noise’, or
microwave or ‘noise’ alone. The Helmholtz coils were
constructed on a frame made of 3/4 in. flexible copper
tubing. Each coil was wound with 100 turns using gauge
18 magnet wire. The nominal resistance of the coil pair
was 5.8 . E-field shielding was provided by connecting
the coil frame to electrical ground. The temporally
incoherent magnetic field (‘noise”) was generated using
a signal recorded in an audiocassette tape. The tape was
played back in a continuous-play cassette player con-
nected to a power amplifier (Hewlett Packard, HP-467A)
whose output was in turn connected to the Helmholtz
coil. The recorded ‘noise’ signal was provided by Dr.
Miguel Penafiel of the Catholic University of America,
Washington, DC. It was a band-limited, extremely low-
frequency magnetic field which was randomly switched
on and off for the duration of the exposure. The pass
band of the ‘noise’ was specified to be nominally
between 30 and 100 Hz. Details of generation of such
a continuous ‘noise’ signal have been previously
described [10]. The on/off action needed to produce the
random on/off pattern was achieved using a computer-
controlled switch. The switching pattern consisted of a
repeating set of 660 alternating on and off intervals that
cycled in approximately 11 min. The duration of these
intervals was chosen at random from a set 11 time values
which included 0.56 s, 1.67 s, and values in between
separated by approximately 0.11 s. The selection was
made so as to create a uniform distribution of on and off
intervals within each 1l-min cycle. All ‘noise’ exposures
were carried out at an average magnetic field flux density
of 60 mG that was monitored using an EMDEX meter
(Enertech Consultants, Campbell, CA). The intensity of
ambient AC magnetic fields (40-800 Hz) in the
laboratory was 1.4 mG.
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2.3. Exposure and water-maze running procedures

There were four treatment groups: microwave-exposed,
‘microwave+noise’-exposed, ‘noise’-exposed, and sham-
exposed animals. There were eight animals in each treatment
group. Rats in the microwave-exposed group were exposed
in waveguides for 1 h to continuous-wave, circularly
polarized, 2450-MHz microwaves at a spatially averaged
power density of 2 mW/cm? (the average whole-body SAR
was 1.2 Wikg [19]). ‘Microwave+noise’-exposed animals
were exposed to microwaves and magnetic ‘noise’ (60 mG)
simultaneously for 1 h in waveguides. A rat of the ‘noise’-
exposed group was placed in a waveguide and exposed to the
magnetic ‘noise’ (60 mG) for 1 h, with the waveguide not
activated. For sham exposure, a rat was placed in a
waveguide for | h with neither the microwave-waveguide
nor the Helmholtz coils activated.

The water maze was a plastic circular pool (diameter:
246 cm; height: 39 cm; wall thickness: 1 mm) filled with
water (22 °C) to a depth of 27 cm. The water was made
opaque by addition of powdered milk. A Plexglas platform
(15%20 cm) was placed at the center of one quadrant
(designated as the N-E quadrant) of the maze and
submerged 5 cm below the surface of the water. Each rat
was given two training sessions daily separated by 4 h on
three consecutive days. Maze training was carried out
between 9 a.m. and 3 p.m. As many as four rats were run
sequentially in a session by staggering exposure times
between two rats by 10 min. The sequence in which the
rats were run was the same over the six sessions.

In each training session, an animal was first exposed
to microwaves, ‘microwave+noise’, or ‘noise’ or sham-
exposed for | h in a waveguide. It was then released into
the water from the wall of the maze at arbitrarily defined
east, south, west, and north points. Therefore, there were
four trials per training session per animal. The sequence
of points of release into the water followed a random
order, but included one release from each of the east,
south, west, and north points in each training session.
The animal was allowed to swim to the platform. If it
could not locate the platform within | min, it would be
picked up and placed on the platform. After landing or
being placed on the platform, it was allowed to stay there
for 30 s before another trial or was removed from the
maze after the fourth trial. Performance in the maze was
videotaped via a closed-circuit television system for
detailed analysis later. In addition, 1 h after the last
(6th) training session, each animal was given a ‘probe
trial’, in which the platform was removed from the maze
and the animal was released from' the south point and
allowed to swim in the maze for 2 min.

2.4. Data analysis

From the video recording, escape time (i.e. the time
between release in the water to landing on the platform)

was measured by a stopwatch. Trials with no successful
‘escape’ were given a score of 60 s. The average escape
time of the four trials (released at east, south, west, and
north points of the maze) in each training session of each
rat was used in data analysis. For the probe trial, time
spend in the quadrant of the maze where the platform
was previously located (N-E) was scored. These analyses
were conducted by an experimenter unaware of the
treatment conditions of the rats being scored. Escape
time data from training sessions were analyzed by the
ANOVA for mean (treatment, training trial) and inter-
action (Treatment X Trial) effects. Individual response
curves were analyzed by the trend analysis and compared
by the method of Krauth [20] using the Mann—Whitney
U test to compare performance between treatment groups.
Data from the probe trial were analyzed using the one-
way ANOVA. Difference between treatment groups was
compared by the Newman-Keuls test. A difference at
P<05 was considered statistically significant.

3. Results

Data on escape time are shown in Fig. 1. ANOVA
shows significant treatment [ £(3,28)=7.90, P<005] and
training trial [F(5,140)=34.55, P<005] effect and a
significant Treatment X Trial interaction effect
[F(15,140)=3.26, P<025). Animals progressively learned
the location of the platform with training. A significant
decrease in escape time with training sessions was
observed in all four groups of animals [trend analysis
for trial effect: sham, F(5,35)=29.85, P<005; noise,
F(5,35)=9.52, P<005; microwave, F(5,35)=6.93,
P<005; microwave+noise, F(5,35)=5.72, P<005]. How-
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Fig. 1. Average “escape time’ (i.e. time to reach the platform after release
into the water) during the six training sessions of microwave, sham,
‘sham-+noise’ and ‘microwave-+noise’-exposed rats. #n=8 in each group.
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Table 1
Average time spent during the probe trials in the quadrant where the
platform was located during training sessions

Treatment Mean time spent in previously
platformed quadrant (s)+S.E.M.

Sham 39.1+3.6

Noise 40.8+£3.6

Microwave 263%1.6

Microwave+noise 41.1+3.4

n=8 for each treatment group.

ever, comparison of the response curves of the various groups
shows that microwave exposure significantly affected the
animals in learning the location of the platform. They took
significantly longer time to locate and land on the platform
(sham vs. microwave, P<001), as compared by the method of
Krauth [20] using the Mann-Whitney U test. ‘Noise’
exposure alone did not significantly affect learning (sham
vs. ‘noise’, P=.172). Simultaneous ‘noise’ exposure with
microwaves significantly attenuated the effect of microwaves
(microwave vs. ‘microwave+tnoise’, P=.025). However,
there was also a significant difference in leaming between
the ‘microwave+noise’ and the sham-exposed animals
(P=.016).

Results of the probe trials are shown in Table . It
contains the ‘time spent in the previously platformed
quadrant’ during the 2-min probe trial of the four groups
of animals. One-way ANOVA of the data shows a
significant treatment effect [ #(3,28)=3.186, P<05]. New-
man—Keuls test shows that the microwave-exposed rats
spent significantly less time (P<05) in the quadrant than
the other three treatment groups (sham, ‘noise’ and
‘microwaves+noise’). There is no significant difference
among the responses of these three groups.

4. Discussion

Data from the present experiment show that acute
exposure (1 h) of rats to a continuous-wave 2450-MHz
microwaves, at an average whole-body SAR of 1.2 W/kg,
significantly affected their rate of leaming to locate a
submerged platform in a water maze, which indicates that
‘reference’ memory was affected by microwave exposure.
This behavioral deficit was further confirmed by the
results of the probe trials. The data also show that
simultaneous exposure to a temporally incoherent mag-
netic ‘noise’ could attenuate the effect of microwaves on
spatial learning. These data support the hypothesis of
Litovitz that ‘cellular response to EMFs occurs through a
detection process involving temporal sensing’ [15].
Superpositioning the incoherent magnetic field could
have attenuated the sensing and thus biological response
to the microwave radiation. A magnetic ‘noise’ of flux
density of 60 mG was used in this study because this

intensity has been shown in another study in our
laboratory to be able to block microwave-induced DNA
damage in rat brain cells (unpublished results).

In the water maze, rats form spatial reference mapping
(i.e. using the relative position of various different environ-
mental cues as guides) to locate the position of the platform
[21,22]). Thus, microwave-exposed rats are deficient in
forming a ‘reference’ spatial map based on environmental
cues. The neuroanatomical and neurochemical processes
associated with water-maze performance are well studied.
Cholinergic innervations to the cerebral cortex and hippo-
campus play important roles in spatial learning [23-25] and
learning and memory in the water maze [26-29]. Deficit in
water maze performance could be caused by a decrease in
cholinergic activity in the brain. Thus, our previous findings
[2-5] that microwave exposure decreased cholinergic
activities in the frontal cortex and hippocampus of the rat
may explain the spatial learning deficit observed in animals
after microwave exposure. It would be interesting to
investigate whether a temporally incoherent magnetic
‘noise’ could block the effects of microwaves on central
cholinergic activities. .

Another possible mechanism of interaction is the
endogenous opioid systems in the brain. We have previously
reported that microwaves activate endogenous opioids in the
brain of the rat that in turn leads to a decrease in cholinergic
activities in the frontal cortex and hippocampus [5,30-32].
Furthermore, microwave-induced deficit in radial-arm maze
learning in the rat could be blocked by pretreating animals
with naltrexone, but not by the peripheral opiate antagonist
naloxone bromide [6]. Even though we do not have any
information regarding the neural mechanisms of micro-
wave-induced water-maze deficit, central cholinergic and
opioid systems are involved in water-maze performance
[33,34]. It is possible that the ‘incoherent’ magnetic field
could neutralize the effect of microwaves via its action on
the cholinergic and opioid systems, since effects of
extremely low-frequency magnetic fields on the cholinergic
[35-37] and opioids [38-42] systems have been reported.

However, because temporally incoherent EMF has been
shown to block a variety of seemingly unrelated biological
effects of coherent EMF, including chick embryo develop-
ment [12], ornithine decarboxylase activity [11,13,14], cell
proliferation [16], c-myc transcription [17], DNA damage
(Lai and Singh, unpublished results), and behavior (this
study), it is likely that the interaction occurs at a more basic
biological level, such as the cell membrane as proposed by
Litovitz et al. {10,11].
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